首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3659篇
  免费   405篇
  国内免费   2篇
  2023年   32篇
  2022年   28篇
  2021年   158篇
  2020年   79篇
  2019年   98篇
  2018年   99篇
  2017年   88篇
  2016年   140篇
  2015年   218篇
  2014年   212篇
  2013年   243篇
  2012年   288篇
  2011年   252篇
  2010年   166篇
  2009年   143篇
  2008年   204篇
  2007年   140篇
  2006年   152篇
  2005年   132篇
  2004年   104篇
  2003年   106篇
  2002年   101篇
  2001年   64篇
  2000年   49篇
  1999年   30篇
  1998年   24篇
  1997年   18篇
  1996年   25篇
  1995年   19篇
  1994年   26篇
  1993年   13篇
  1992年   41篇
  1991年   42篇
  1990年   25篇
  1989年   29篇
  1988年   29篇
  1987年   27篇
  1986年   27篇
  1985年   27篇
  1984年   30篇
  1983年   28篇
  1982年   22篇
  1981年   14篇
  1980年   16篇
  1979年   20篇
  1977年   19篇
  1974年   18篇
  1973年   17篇
  1972年   23篇
  1966年   16篇
排序方式: 共有4066条查询结果,搜索用时 15 毫秒
31.
Cancer occurs via an accumulation of somatic genomic alterations in a process of clonal evolution. There has been intensive study of potential causal mutations driving cancer development and progression. However, much recent evidence suggests that tumor evolution is normally driven by a variety of mechanisms of somatic hypermutability, which act in different combinations or degrees in different cancers. These variations in mutability phenotypes are predictive of progression outcomes independent of the specific mutations they have produced to date. Here we explore the question of how and to what degree these differences in mutational phenotypes act in a cancer to predict its future progression. We develop a computational paradigm using evolutionary tree inference (tumor phylogeny) algorithms to derive features quantifying single-tumor mutational phenotypes, followed by a machine learning framework to identify key features predictive of progression. Analyses of breast invasive carcinoma and lung carcinoma demonstrate that a large fraction of the risk of future clinical outcomes of cancer progression—overall survival and disease-free survival—can be explained solely from mutational phenotype features derived from the phylogenetic analysis. We further show that mutational phenotypes have additional predictive power even after accounting for traditional clinical and driver gene-centric genomic predictors of progression. These results confirm the importance of mutational phenotypes in contributing to cancer progression risk and suggest strategies for enhancing the predictive power of conventional clinical data or driver-centric biomarkers.  相似文献   
32.
33.
34.
The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised the Toxoplasma mETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of the Toxoplasma complex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their assignment as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for future structural and drug discovery studies.  相似文献   
35.
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions.  相似文献   
36.
37.
38.
Lipophilic cationic technetium-99m-complexes are widely used for myocardial perfusion imaging (MPI). However, inherent uncertainties in the supply chain of molybdenum-99, the parent isotope required for manufacturing 99Mo/99mTc generators, intensifies the need for discovery of novel MPI agents incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged. Herein, we report a novel 68Ga-complex identified through mechanism-based cell screening that holds promise as a generator-produced radiopharmaceutical for PET MPI.  相似文献   
39.
A heterologous radioreceptor assay was developed to follow the purification of an EGF-like polypeptide from bovine kidney. Purification of the growth factor was facilitated by the use of a novel affinity column using fixed A431 cells attached to sephadex beads. The mol. wt. of the purified EGF-LP was estimated to be 5480 from the amino acid composition. The purified EGF-like polypeptide stimulated the proliferation of bovine mammary epithelial cells and appeared to be equipotent to mouse EGF. Available evidence suggests that the purified molecule is distinct from bovine TGF-alpha.  相似文献   
40.
Capsaicin has known health beneficial and therapeutic properties. It is also able to enhance the permeability of drugs across epithelial tissues. Unfortunately, due to its pungency the oral administration of capsaicin is limited. To this end, we assessed the effect of nanoencapsulation of capsaicin, under the hypothesis that this would reduce its pungency. Core-shell nanocapsules with an oily core and stabilized with phospholipids were used. This system was used with or without chitosan coating. In this work, we investigated the in vitro release behavior of capsaicin-loaded formulations in different physiological media (including simulated saliva fluid). We also evaluated the influence of encapsulation of capsaicin on the cell viability of buccal cells (TR146). To study the changes in pungency after encapsulation we carried out a sensory analysis with a trained panel of 24 students. The in vitro release study showed that the systems discharged capsaicin slowly in a monotonic manner and that the chitosan coating had an effect on the release profile. The cytotoxic response of TR146 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, was reduced following its encapsulation. The sensory study revealed that a chitosan coating results in a lower threshold of perception of the formulation. The nanoencapsulation of capsaicin resulted in attenuation of the sensation of pungency significantly. However, the presence of a chitosan shell around the nanoformulations did not mask the pungency, when compared with uncoated systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号